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ABSTRACT

No existing spherical convolutional neural network (CNN) framework is both
computationally scalable and rotationally equivariant. Continuous approaches
capture rotational equivariance but are often prohibitively computationally de-
manding. Discrete approaches offer more favorable computational performance
but at the cost of equivariance. We develop a hybrid discrete-continuous (DISCO)
group convolution that is simultaneously equivariant and computationally scalable
to high-resolution. While our framework can be applied to any compact group,
we specialize to the sphere. Our DISCO spherical convolutions not only exhibit
SO(3) rotational equivariance but also a form of asymptotic SO(3)/SO(2) rota-
tional equivariance, which is more desirable for many applications (where SO(n)
is the special orthogonal group representing rotations in n-dimensions). Through
a sparse tensor implementation we achieve linear scaling in number of pixels on
the sphere for both computational cost and memory usage. For 4k spherical im-
ages we realize a saving of 109 in computational cost and 104 in memory usage
when compared to the most efficient alternative equivariant spherical convolution.
We apply the DISCO spherical CNN framework to a number of benchmark dense-
prediction problems on the sphere, such as semantic segmentation and depth esti-
mation, on all of which we achieve the state-of-the-art performance.

1 INTRODUCTION

Spherical data are prevalent across many fields, from the relic radiation of the Big Bang in cosmol-
ogy, to 360◦ imagery in virtual reality and computer vision. High-resolution data on the sphere are
increasingly common in these and many other fields. Existing deep learning techniques for spherical
data, however, cannot scale to high-resolution while also exhibiting equivariance, a powerful induc-
tive bias responsible in part for the success of Euclidean convolutional neural networks (CNNs).
Furthermore, many tasks involve dense predictions (e.g. semantic segmentation, depth estimation),
necessitating pixel-wise outputs from deep learning models, exacerbating computational challenges.

Continuous spherical CNNs approaches. Bronstein et al. (2021) present the categorization of ge-
ometric deep learning approaches. Deep learning on the sphere falls into the group category, since
the sphere is a homogeneous space with global symmetries on which act elements of the group
of 3D rotations SO(3). In fact, the sphere is often considered as the prototypical example of the
group setting. A number of group-based spherical CNN constructions have been developed (Cohen
et al., 2018; Kondor et al., 2018; Esteves et al., 2018; 2020; Cobb et al., 2021; McEwen et al., 2022;
Mitchel et al., 2022), where Fourier representations of spherical signals (i.e. spherical harmonic rep-
resentations), combined with sampling theorems on the sphere (Driscoll & Healy, 1994; McEwen &
Wiaux, 2011), are considered to provide access to the underlying continuous spherical signals and
symmetries. While such approaches live natively on the sphere and capture rotational equivariance,
they are highly computationally costly due to the need to compute spherical harmonic transforms
(while fast spherical harmonic transforms exist they remain computationally demanding). McEwen
et al. (2022) develop scattering networks on the sphere to alleviate computational considerations.
While such an approach helps to scale to high-resolution input data, some high-resolution informa-
tion is inevitably lost and architectures providing dense predictions are not supported.
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(a) Continuous
Í Equivariant ë Not Scalable

(b) Discrete
ë Not Equivariant Í Scalable

(c) Discrete-Continuous (Ours)
Í Equivariant Í Scalable

Figure 1: Spherical
CNN categorization.

Discrete spherical CNNs approaches. Other approaches to spherical
CNNs generally fall under the grid, graph or geodesic geometric deep
learning categories yielding discrete approaches (Boomsma & Frellsen,
2017; Jiang et al., 2019; Zhang et al., 2019; Perraudin et al., 2019; Cohen
et al., 2019). These approaches offer more favorable computational per-
formance than the group-based frameworks but at the cost of equivariance.
Since a completely regular point distribution on the sphere does in general
not exist, these discrete approaches lose the connection to the underlying
continuous symmetries of the sphere and thus cannot fully capture rota-
tional equivariance (although in some cases limited rotational equivariance
may be achieved; e.g. Cohen et al. 2019).

Our approach. Previous spherical CNN constructions can be categorised
into two broad approaches: continuous approaches that capture rotational
equivariance but are computationally demanding; and discrete approaches
that do not fully capture rotationally equivariance but offer improved com-
putational scaling. In this article we develop a novel hybrid discrete-
continuous (DISCO) approach that is simultaneously computationally
scalable to high-resolution, while also exhibiting excellent equivariance
properties (see Figure 1). We define a DISCO group convolution, which
we then specialize to the sphere. A transposed DISCO convolution can be
considered to support dense-prediction tasks; hence, both high-resolution
inputs and outputs are supported by our framework. DISCO convolutions
afford a computationally scalable implementation through sparse tensor
representations. We build DISCO spherical CNNs that achieve state-of-
the-art performance on a number of high-resolution dense prediction tasks,
including semantic segmentation and depth estimation.

2 BACKGROUND

2.1 CONTINUOUS GROUP CONVOLUTION

Definition. To generalize CNNs to group geometric deep learning settings the group convolution can
be considered (see, e.g., Cohen & Welling, 2016; Esteves, 2020) where the convolution (sometimes
called correlation) of two functions f, ψ : G→ R on the group G is given by

(f ? ψ)(g) =

∫
u∈G

f(u)ψ(g−1u)dµ(u), (1)

where g, u ∈ G and dµ(u) is the invariant Haar measure. In many cases signals are not defined on
a space with a group structure. Often signals are defined on a quotient space1 G/H , where H is a
subgroup of G, i.e. u ∈ G/H and f, ψ : G/N → R. For Lie groups, if H is non-normal then G/H
is not a group but simply a differentiable manifold on which G acts, i.e. a homogeneous space. In
either setting the group convolution exhibits equivariance to group actions, that is (Qf ? ψ)(g) =
(Q(f ?ψ))(g), whereQ denotes the group action corresponding to q ∈ G, i.e. (Qf)(g) = f(q−1g).

Fourier representation and sampling theory. The group convolution may be written in Fourier
space by the product ̂(f ? ψ)(k) = f̂(k)ψ̂∗(k) (see, e.g., Esteves, 2020), where k is the Fourier
conjugate variable of u, ·̂ denotes the Fourier transform, and ·∗ denotes complex conjugation. For
compact manifolds (groups) the Fourier space is discrete (the canonical example being the Fourier
series of functions defined on the circle S1, i.e. periodic functions). Furthermore, for bandlimited
signals on compact homogeneous manifolds, exact quadrature formulae exist (Pesenson & Geller,
2011), from which the existence of a sampling theorem follows where all information content of a
continuous bandlimited signal can be captured in a finite number of spatial samples.

Computation. These results provide a strategy to compute the continuous group convolution ex-
actly for bandlimited functions defined on compact homogeneous manifolds: (i) compute the finite

1The quotient space G/H can be considered (in a non-rigorous way) as formed by collapsing all elements
of H to the identity in G, in a sense factoring out the elements of H from G.
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set of Fourier coefficients of the signal and filter leveraging the sampling theorem; (ii) compute the
group convolution as a product in Fourier space; (iii) compute the convolved signal from its Fourier
coefficients. Although the computation is performed in a discrete manner through the finite Fourier
representation, the underlying continuous group convolution is computed exactly, without any dis-
cretization error. Consequently, perfect group equivariance is achieved. Note, however, that this
approach does require computation of the Fourier transform on the manifold, which may be costly.

2.2 CONTINUOUS SPHERICAL CONVOLUTIONS

The strategy outlined above to compute the continuous group convolution exactly for bandlimited
signals on compact homogeneous manifolds is the generalization of precisely the approach taken
for group-based spherical CNNs (Cohen et al., 2018; Kondor et al., 2018; Esteves et al., 2018; 2020;
Cobb et al., 2021; McEwen et al., 2022), where Fourier (i.e. spherical harmonic) representations of
signals are computed to provide access to the underlying continuous structure and symmetries of the
sphere. The corresponding spherical convolutions exhibit perfect rotational equivariance, with any
numerical errors arising simply from finite precision arithemetic (see, e.g., Cobb et al., 2021). We
concisely review the details of this approach to constructing spherical CNNs.

Definition. The spherical convolution of two functions f, ψ : S2 → R is given by

(f ? ψ)(R) =

∫
S2

f(ω)ψ(R−1ω)dω, (2)

where ω = (θ, φ) denote spherical coordinates with colatitude θ ∈ [0, π] and longitude ϕ ∈ [0, 2π),
and dω = sin θdθdφ is the spherical Haar measure. We consider rotations R ∈ SO(3), where
SO(n) is the special orthogonal group of rotations in n-dimensions. The sphere S2 is isomorphic
to the quotient space SO(3)/SO(2); it does not exhibit a group structure but is a homogeneous
manifold.

Fourier representation and sampling theory. Since both S2 and SO(3) are compact, their Fourier
spaces are discrete and sampling theorems can be leveraged to compute Fourier representations
exactly for sampled bandlimited signals (Driscoll & Healy, 1994; Kostelec & Rockmore, 2008;
McEwen & Wiaux, 2011; McEwen et al., 2015). The spherical convolution can then be expressed
as a product in Fourier space (see, e.g., McEwen et al., 2013; Cohen et al., 2018; Cobb et al., 2021).

Computation. For signals on the sphere bandlimited at L (i.e. with Fourier coefficients zero above
L), spherical convolutions can be computed exactly as a product in Fourier space. Although the
computation is performed in a discrete manner through a Fourier representation, by appealing to un-
derlying sampling theorems the continuous convolution is computed exactly. Consequently, perfect
rotational equivariance is achieved. However, the harmonic transforms required are computation-
ally demanding (even with fast algorithms; e.g. McEwen & Wiaux 2011; McEwen et al. 2015) and
present the major computational bottleneck in scaling equivariant spherical CNNs to high-resolution.

2.3 DISCRETE SPHERICAL CONVOLUTIONS

Alternative approaches to constructing spherical CNNs typically consider a discrete approximation
of the convolution of Equation 2 (Boomsma & Frellsen, 2017; Jiang et al., 2019; Zhang et al., 2019;
Cohen et al., 2019). It is well-known that a completely regular point distribution on the sphere does
in general not exist. Consequently, while a variety of spherical discretization schemes exists, it is
not possible to discretize the sphere in a manner that is invariant to rotations (Cobb et al., 2021). On
the other hand, since discrete approaches avoid the need for Fourier transforms on S2 and SO(3),
they are generally more computationally efficient than the continuous approaches discussed above
that do exhibit rotational equivariance.

3 DISCRETE-CONTINUOUS (DISCO) CONVOLUTIONS

To simultaneously realize computationally scalability and rotational equivariance we require a hy-
brid convolution that avoids Fourier transforms on manifolds, which otherwise induce consider-
able computational cost, while also avoiding a complete discretization, which otherwise sacrifices
rotational equivariance. We present a novel DISCO (discrete-continuous) group convolution that
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achieves precisely this aim. We then specialize to the spherical setting, before discussing equivari-
ance, filter parameterization and the corresponding transposed convolution for dense predictions.

3.1 DISCO GROUP CONVOLUTION

The DISCO group convolution follows by a careful hybrid representation of the group convolution
of Equation 1. Some components of the representation are left continuous, to facilitate accurate
rotational equivariance, while other components are discretized, to yield scalable computation.

Definition. We carefully approximate the group convolution by the DISCO representation

(f ? ψ)(g) =

∫
u∈G

f(u)ψ(g−1u)du ≈
∑
i

f [ui]ψ(g−1ui)δui, (3)

where square brackets and index subscripts denote discretized quantities and round brackets denote
continuous quantities. Clearly the signal of interest must be discretized at sample positions ui,
where i denotes the sample index. Critically, however, the filter ψ and the group action remain
continuous. This allows the filter ψ to be transformed continuously by any g, keeping a coherent
representation that avoids any discretization errors and, consequently, affords group equivariance,
unlike a fully discrete method. The integral with respect to u is also discretized. For bandlimited
signals on compact homogeneous manifolds, the existence of a sampling theorem ensures that the
integral can be approximated accurately using quadrature weights δui (see Section 2.1).

Approximation accuracy and equivariance. The DISCO approximation of Equation 3 is highly
accurate for bandlimited signals, which real-world signals can be well approximately by for suffi-
cient bandlimit. By appealing to a sampling theorem, all information content of the signal can be
captured in the finite set of samples {f [ui]}. The filter is represented continuously so also does not
introduce any error. The only source of approximation error is thus the quadrature used to eval-
uate the integral. For a sufficiently dense sampling, one can appeal to the sampling theorem and
corresponding quadrature to evaluate this exactly. Therefore, it is possible in principle to compute
the DISCO group convolution exactly, without any approximation error. Since the approximation is
highly accurate, which can be made exact for a sufficiently dense sampling, and group actions are
treated continuously, the DISCO group convolution exhibits excellent equivariance properties.

Computational considerations. The DISCO convolution also affords a scalable implementation.
Firstly, it avoids any need for costly Fourier transforms on manifolds and groups. Secondly, as
in the Euclidean setting, filters with local spatial support are considered to reduce both memory
and computational requirements. The naive scaling of the DISCO group convolution for a general
kernel is O(N2), where for simplicity N represents both the number of input and output samples.
However, for localized filters with K non-zero samples, where K � N , the scaling reduces to
O(KN) = O(N), just as for Euclidean CNNs.

3.2 DISCO SPHERICAL CONVOLUTION

Definition. We now specialize to the spherical setting, where the spherical convolution of Equation 2
can be accurately approximated by the DISCO representation

(f ? ψ)(R) =

∫
S2

f(ω)ψ(R−1ω)dω ≈
∑
i

f [ωi]ψ(R−1ωi)δωi, (4)

where, for now, we consider 3D rotations R ∈ SO(3), i.e. f ? ψ : SO(3) → R. As in the general
group setting the signal must clearly be discretized at sample positions ωi, as is the integral with
quadrature weights δωi. Again, critically, the filter ψ and group action, in this case corresponding
to rotation R, remain continuous, facilitating rotational equivariance.

Approximation accuracy and equivariance. We appeal to the sampling theorem on the sphere of
McEwen & Wiaux (2011) since it provides the most efficient sampled signal representation (halving
the Nyquist rate compared to Driscoll & Healy 1994). For spherical signals bandlimited at L, all
information content of the underlying continuous signal is captured in the ∼ 2L2 samples {f [ωi]}.
The only source of approximation error is then the discretization of the integral. By adopting the
exact quadrature of McEwen & Wiaux (2011) this integral could in principle be computed exactly.
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However, since the integrand is the product of two signals each bandlimited at L, it is itself bandlim-
ited at 2L (Driscoll & Healy, 1994). Exact quadrature would thus require the signals to be sampled
at ∼ 2(2L)2 = 8L2 positions. For our implementation we avoid upsampling signals and tradeoff a
small approximation error to avoid a four-fold increase in computation. Nevertheless, we do adopt
the quadrature weights of McEwen & Wiaux (2011) to keep approximation errors to a minimum.
Since the approximation remains highly accurate, and the action of rotations on filters is treated
continuously, the DISCO spherical convolution exhibits excellent rotational equivariance properties
(see Section 3.3).

Computational considerations. For the continuous spherical convolution approach computed via
Fourier space, the computation cost is dominated by the Fourier transform on the sphere, which
naively is O(N2) but for fast algorithms scales as O(N3/2) (e.g. McEwen & Wiaux, 2011). The
naive computational scaling of the DISCO spherical convolution is O(N2). When considering lo-
calized filters with on average K non-zero terms, with K � N , the scaling of the DISCO spherical
convolution is reduced to O(N), again just as in the Euclidean setting.

Restricting rotations to SO(3)/SO(2). While the DISCO spherical convolution is already effi-
cient, we seek further computational savings by reducing the space of rotations considered from
SO(3) to SO(3)/SO(2). To make this explicit, first consider the parameterization of a rotation
R ∈ SO(3) by the Euler angles α ∈ [0, 2π), β ∈ [0, π] and γ ∈ [0, 2π), where the rotation may
be written R = Z(α)Y (β)Z(γ), following the zyz Euler convention for rotations Z(·) and Y (·)
about the z and y axes, respectively. Rotations restricted to the quotient space may be written
R = Z(α)Y (β) ∈ SO(3)/SO(2). Restricting rotations to SO(3)/SO(2), which is isomorphic to
the sphere S2, is analogous to typical Euclidean planar CNNs, where filters are translated across
the image but are not rotated in the plane. However, as the space SO(3)/SO(2) is not a group,
when restricting rotations in this manner important differences to the usual setting arise since we no
longer have a group convolution (as elaborated in Section 3.3). We denote the spherical convolution
when restricting to R ∈ SO(3)/SO(2) by f ©? ψ : SO(3)/SO(2) → R, using a different symbol
to the SO(3) spherical convolution to avoid any confusion. Since SO(3) is a three dimensional
space, whereas SO(3)/SO(2) is two dimensional, restricting rotations to SO(3)/SO(2) reduces the
dimension of the output space from O(L3) to O(L2), yielding an overall computational scaling of
O(N) = O(L2), where we recall L denotes the spherical signal bandlimit.

3.3 ROTATIONAL EQUIVARIANCE

SO(3) rotational equivariance. Consider the DISCO spherical convolution f ? ψ for rotation
R ∈ SO(3), with Q denoting the action of the rotation Q ∈ SO(3) on signals, which we show
satisfies SO(3) rotational equivariance:

((Qf) ? ψ)(R) ≈
∑
i

(Qf)[ωi]ψ(R−1ωi)δωi
(∗)
=
∑
i

f [ωi]ψ((Q−1R)−1ωi)δωi

(∗∗)≈ (f ? ψ)(Q−1R) = (Q(f ? ψ))(R). (5)

The only approximations involved in Equation 5 (highlighted by the approximate equality symbols)
follow from the quadrature of the integral. Critically, no approximation is involved in applying
the rotation Q due to the continuous representation of rotations and the filter ψ, i.e. the equality
labeled (∗) is exact. Consequently, the DISCO spherical convolution f ?ψ exhibits excellent SO(3)
rotational equivariance. An important point to note in the SO(3) rotational equivariance proof, which
is often ignored, is that it is only possible to relate the expression back to a spherical convolution,
i.e. the step labeled (∗∗), since SO(3) exhibits a group structure and so Q−1R ∈ SO(3).

Asymptotic SO(3)/SO(2) rotational equivariance. Consider the DISCO spherical convolu-
tion f ©? ψ and rotations Q,R ∈ SO(3)/SO(2). Since SO(3)/SO(2) is not a group, Q−1R /∈
SO(3)/SO(2) and step (∗∗) of the equivariance proof of Equation 5 does not extend to f ©? ψ.
Consequently, f ©? ψ for R ∈ SO(3)/SO(2) does in general not satisfy SO(3) or SO(3)/SO(2)
equivariance (contrast with the Euclidean planar setting that is translationally equivariant for the
analogous setting). However, the DISCO spherical convolution f ©? ψ does satisfy a form of
asymptotic SO(3)/SO(2) equivariance. Let Q = Z(α)Y (β) and R = Z(α′)Y (β′), then Q−1R =
Y (−β)Z(α′−α)Y (β′) ∈ SO(3). As β → 0, we have Q−1R→ Z(α′−α)Y (β′) ∈ SO(3)/SO(2)
and hence ((Qf)©? ψ)(R)→ (Q(f©? ψ))(R), i.e. we recover asymptotic SO(3)/SO(2) rotational
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equivariance as β → 0. Note that there is no restriction on α. This asymptotic SO(3)/SO(2) equiv-
ariance is validated numerically in Section 5.1 and shown to be reasonably accurate even for moder-
ately large β. Asymptotic SO(3)/SO(2) equivariance is of significant practical use since content in
spherical signals is often orientated and similar content often appears at similar latitudes, particularly
for 360◦ panoramic photos and video. Hence, asymptotic SO(3)/SO(2) rotational equivariance may
be more desirable than SO(3) equivariance for many applications.

Axisymmetric filters and SO(3) rotational equivariance. The rotational equivariance consid-
erations presented above hold for general filters with directional structure. Axisymmetric filters,
i.e. filters that are invariant to rotations about their own axis, may also be considered. While ax-
isymmetric filters are less expressive than directional filters they have nevertheless been shown to
be effective for spherical CNNs (Esteves et al., 2018). For axisymmetric filters the SO(3) spheri-
cal convolution f ? ψ and the SO(3)/SO(2) spherical convolution f ©? ψ identify since f ? ψ for
R = Z(α)Y (β)Z(γ) ∈ SO(3) is independent of γ. Consequently, the DISCO spherical convo-
lution f ©? ψ for R ∈ SO(3)/SO(2) with an axisymmetric filter ψ does exhibit SO(3) rotational
equivariance (as validated numerically in Section 5.1).

3.4 FILTER PARAMETERIZATION

We consider a continuous representation of the filter ψ in the DISCO spherical convolution, which
allows us to evaluate ψ(ω) for any coordinate ω ∈ S2, thereby allowing us to compute ψ(R−1ω) for
any continuous rotation R exactly. Nevertheless, the filter must be parameterized by a finite number
of learnable parameters p. We consider filters that are either axisymmetric ψ(θ;p), directional and
separable ψ(θ, φ;p) = ϑ(θ;p)ϕ(φ;p), or directional ψ(θ, φ;p) without any further constraint. In
all cases the filters are parameterized with equally spaced nodes along θ and φ, with each node
value a learnable parameter. To evaluate the filter for any continuous argument we simply use linear
interpolation. We localize the filter spatially by constraining it to be zero for angles above some
cutoff angle θcutoff.

3.5 DISCO TRANSPOSED SPHERICAL CONVOLUTION

Dense pixel-wise predictions are required for numerous deep learning tasks. Existing equivariant
spherical CNNs cannot support dense predictions since they are too computationally demanding. A
DISCO transposed spherical convolution can be defined to increase the resolution of internal fea-
ture representations in an analogous manner to the transposed convolutions considered in Euclidean
U-Net architectures (Ronneberger et al., 2015), thereby supporting dense predictions.The DISCO
transposed spherical convolution f ©? † ψ : S2 → R, restricting rotations to SO(3)/SO(2), is given
by

(f ©? † ψ)(ω) =

∫
S2

f(ω′)ψ(R−1ω′ ω)dω′ ≈
∑
i

f [ωi]ψ(R−1ωi
ω)δωi, (6)

where we introduce the notation Rω = Z(φ)Y (θ) ∈ SO(3)/SO(2) for ω = (θ, φ) in order to make
the dependence of the rotation on the integration variable explicit. The output of the transposed
convolution is the result of summing all filters rotated to eachRωi , with a weight of f [ωi], analogous
to the Euclidean transposed convolution. Identical approximation and equivariance properties as the
(non-transposed) DISCO spherical convolution hold.

4 COMPUTATIONALLY SCALABLE DISCO SPHERICAL CONVOLUTION

The DISCO convolution affords a computationally scalable implementation through sparse tensor
representations. While we focus on the spherical setting of immediate practical interest, the same
principles can be applied to any compact group. We leverage sparse-dense tensor multiplication
operators to compute the DISCO spherical convolution efficiently on hardware accelerators (e.g.
GPUs, TPUs). By exploiting symmetries of the sampling scheme we also describe how memory
usage can be optimized. Automatic differentiation of sparse tensor operations that include learn-
able parameters is not supported in either TensorFlow or PyTorch, hence we derive custom sparse
gradient representations to be used when training models.
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4.1 SPARSE TENSOR REPRESENTATION

Representation and sampling. The DISCO spherical convolution for rotations restricted to R ∈
SO(3)/SO(2), here denoted by the variable h = f©? ψ for notational brevity, may be written by the
tensor multiplication

hj =
∑
i

Ψjifi, (7)

where Ψ is a tensor with elements Ψji = ψ(R−1j ωi), fi is the sampled spherical input sig-
nal (collapsed to a vector) with quadrature weights absorbed, and hj is the convolved output at
Rj = Z(φj)Y (θj), or more simply, output coordinate (θj , φj). We adopt the sampling theorem of
McEwen & Wiaux (2011) so that all of the information content of bandlimited spherical signals
can be captured in a finite set of ∼ 2L2 samples. We also adopt the associated quadrature weights
but, as discussed in Section 3.2, do not upsample signals, trading off a small approximation error in
numerical integration to realize a significant reduction in computational cost. While the numerical
integration is then no longer exact, it remains highly accurate.

Sparse representation. To compute the elements of Ψ we first compute the continuously rotated
coordinates, which we denote as tensors (Θji,Φji) = R−1j ωi, and then pass them to the continuous
filter function to evaluate Ψji = ψ(Θji,Φji) without any discretization error. For spatially localized
filters, Ψ will be sparse and we need only compute the rotated coordinates if Ψji will be non-zero.
We exploit knowledge of the support of the filters, given by θcutoff, to limit the number of rotated
coordinates that need to be computed. Consequently, Θ and Φ are also sparse tensors since we
compute only coordinates where Ψ will be non-zero. The sparse representation of Ψ can thus be
computed efficiently and Equation 7 can then be computed by a sparse-dense tensor multiplication.
For transposed spherical convolutions, Ψ is simply replaced by Ψ†. DISCO spherical convolutions
and transpose convolutions can thus be computed efficiently by sparse-dense tensor operations that
map well onto hardware accelerators, which for practical purposes can result in substantial enhance-
ments in computational performance.

Scalable computation. Empirically we find that the computational cost of the DISCO spherical
convolution scales linearly in the number of spherical pixels, i.e. as O(N) = O(L2), as predicted;
furthermore, not only does it scale more favorably than the most efficient alternative equivariant
spherical convolution layer but its absolute cost is also considerably lower (see Appendix A for
details). For example, for 4k spherical images we achieve a saving in computational cost of 109.

Architectures. Efficient spherical implementations of common CNN architectures can then be con-
structed by combining the DISCO forward and transpose spherical convolutions with pointwise
non-linear activations and other common architectural features, such as skip connections, batch-
normalization2, multiple channels, etc. Note that in the architectures we consider we typically adopt
depthwise separable convolutions (Chollet, 2017) for computational efficiency.

4.2 MEMORY OPTIMIZATIONS

Explicit sampling. For structured spherical sampling schemes many of the elements of Ψ are re-
peated, which opens the possibility of memory compression. While memory may be compressed
for various structured samplings, we focus on the sampling scheme that we adopt. Specifically, we
sample spherical coordinates by (θt, φp) = (πt/L, πp/L) for t, p ∈ Z, 0 ≤ t ≤ L, 0 ≤ p ≤ 2L−1
(McEwen & Wiaux, 2011; Daducci et al., 2011), where recall L is the spherical harmonic ban-
dlimit, which plays the role of resolution, yielding 2L(L+ 1) pixels on the sphere. Incidentally, this
sampling scheme maps onto the typical sampling of equirectangular 360◦ panoramic images well.

Compressed tensor. For clarity we write the input and output coordinates in terms of their indi-
vidual spherical coordinates ωi = (θt, φp) and ωj = (θt′ , φp′), respectively, i.e. i = (t, p) and
j = (t′, p′). It is then clear that the filter tensor Ψ is a 4-dimensional tensor that may be written
explicitly as Ψji = Ψt′p′tp. By exploiting symmetries of our sampling scheme Ψ can be reduced
to 3 dimensions by noticing that the two tensor elements Ψt′p′tp and Ψt′0t(p−p′) are equal. This

2In order to ensure batch-normalization for sampled spherical signals is rotationally equivariant we adapt
the standard batch-normalization to compute averages over the sphere, with appropriate sample weighting.
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follows since a rotation in Z(φ) is equivalent to a translation in the input coordinates by φ:
Ψt′p′tp = ψ((Z(φp′)Y (θt′))

−1(θt, φp)) = ψ(Y −1(θt′)(θt, φp − φ′p)) = Ψt′0t(p−p′). (8)
For our sampling scheme the set of all translated coordinates falls on the set of original coordinates,
i.e. {p− p′} = {p}, and hence we can store Ψt′0t(p−p′) as Ψt′0tp. For a dense representation Ψt′0tp

has O(L3) elements; however, for localized filters this is reduced to O(L2) non-zero elements;
hence, memory usage also scales linearly with number of spherical pixels.

Efficient compressed sparse-dense tensor multiplication. The compressed version of Ψ can be
used efficiently in the sparse tensor multiplication by re-writing Equation 7 as

ht′p′ =
∑
tp

Ψt′p′tpftp =
∑
tp

Ψt′0t(p−p′)ftp =
∑
tp

Ψt′0tpft(p+p′). (9)

Notice that the last line is a multiplication between ftp shifted by p′ in the p coordinate and Ψt′0tp.
Hence, we can implement the compressed tensor multiplication by looping over p′ and simply shift-
ing the input in p, which is considerably more efficient than repeatedly shifting the elements of a
sparse tensor. To support multiple channels we adopt depthwise separable convolutions (Chollet,
2017) not only for computational efficiency, but also for memory efficiency.

Scalable memory usage. Empirically we find that when incorporating the optimizations discussed
above memory requirements of the DISCO spherical convolution indeed scale linearly with number
of spherical pixels, i.e. as O(L2), as predicted, providing a considerable saving over the most effi-
cient alternative equivariant spherical convolution layer (see Appendix A for details). For example,
for 4k spherical images we achieve a saving in memory of 104.

4.3 SPARSE GRADIENTS

Deep learning models are typically trained by optimization algorithms that leverage gradient infor-
mation, where gradients are computed efficiently by automatic differentiation. However, automatic
differentiation of sparse tensor operations that include learnable parameters, as in the DISCO con-
volution, is not supported either by TensorFlow or PyTorch. Thus, we implement custom sparse
gradients, as described in Appendix B.

5 EXPERIMENTS

We first demonstrate the equivariance properties of our scalable DISCO spherical convolutional
layers, before tackling a number of dense-prediction benchmark problems with spherical CNNs built
using our DISCO framework (implemented in the CopernicAI 3 code). We achieve state-of-the-art
performance on all benchmarks. See Appendix D for further details on benchmark experiments.

5.1 EQUIVARIANCE TESTS

To test the equivariance of DISCO spherical convolutions we consider random test signals and com-
pute the mean relative equivariance error between rotating signals before and after the convolution.
For axisymmetric filters we achieve excellent rotational equivariance with error ∼ 0.04%. For di-
rectional filters, for which equivariance is asymptotic since we consider SO(3)/SO(2) rotations, we
recover equivariance errors of ∼ 0.01% in the limit of latitudinal rotation β = 0◦. As β increases,
equivariance errors increase but, nevertheless, we observe only moderate equivariance error of just a
few percent at β = 10◦ (this compares favorably to the equivariance error of ∼ 35% for a spherical
ReLU at L = 32; Cohen et al. 2018; Cobb et al. 2021). See Appendix C for further details.

5.2 ROTATED MNIST ON THE SPHERE

We consider the benchmark of classifying randomly rotated MNIST digits projected onto the sphere
(Cohen et al., 2018) for three experimental modes NR/NR, R/R and NR/R, indicating whether the
training/test sets, respectively, have been rotated (R) or not (NR). Results are presented in Table 1 for
bandlimitL = 1024. The DISCO framework performs well at high resolution and, moreover, similar
performance is achieved in all rotational settings, demonstrating excellent rotational invariance.

3https://www.kagenova.com/products/copernicAI/
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Table 1: Results for spherical MNIST.
NR/NR R/R NR/R

Planar 98.3 53.9 14.3
DISCO-Axisymmetric 98.6 98.7 98.6

Table 3: Results for Omni-SYNTHIA
Model mIoU mAcc

Planar UNet 44.6 52.6
UGSCNN (Jiang et al., 2019) 37.6 48.9
HexUNet (Zhang et al., 2019) 48.3 57.1

DISCO-Separable (Ours) 48.3 59.3
DISCO-Separable-Aug (Ours) 49.2 63.7

Table 2: Results for 2D3DS.
Model mIoU mAcc

Planar UNet 35.9 50.8
UGSCNN (Jiang et al., 2019) 38.3 54.7
GaugeNet (Cohen et al., 2019) 39.4 55.9
HexRUNet (Zhang et al., 2019) 43.3 58.6
SWSCNNs (Esteves et al., 2020) 43.4 58.7
CubeNet (Shakerinava & Ravanbakhsh, 2021) 45.0 62.5
MöbiusConv (Mitchel et al., 2022) 43.3 60.9

DISCO-Axisymmetric (Ours) 39.7 54.1
DISCO-Separable (Ours) 43.9 60.9
DISCO-Directional (Ours) 45.2 61.5
DISCO-Directional-Aug (Ours) 45.7 62.7

Table 4: Results for Pano3D.
Model Parameters Depth Error Metrics Depth Accuracy Metrics

wRMSE wRMSLE wAbsRel wSqRel δico
1.05 δico

1.1 δico
1.25 δico

1.252

Planar UNet 27M 0.4520 0.1300 0.1147 0.0811 36.68% 60.59% 88.31% 96.96%
(Albanis et al., 2021)

DISCO-Directional 658k 0.5063 0.1695 0.1109 0.0852 38.32% 62.12% 88.65% 97.29%
(Ours)

5.3 SEMANTIC SEGMENTATION

We consider the dense-prediction problem of semantic segmentation of 360◦ photos, for two
datasets, using a common backbone of a DISCO spherical convolutional residual U-Net architecture.

2D3DS dataset of indoor 360◦ photos. Results for the semantic segmentation of indoor scenes of
the 2D3DS dataset (Armeni et al., 2017) are presented in Table 2. Our DISCO-Directional archi-
tecture outperforms the DISCO-Axisymmetric architecture, which we attribute to being due to its
asymptotic SO(3)/SO(2) equivariance (that can be considered as “orientation aware”) and having
more expressive directional filters. We also include augmentation, which helps to improve perfor-
mance. We achieve state-of-the-art performance compared to all previous methods.

Omni-SYNTHIA dataset of outdoor 360◦ photos. Results for the semantic segmentation of out-
door city scenes of the Omni-SYNTHIA dataset (Ros et al., 2016) are presented in Table 3. We
consider a DISCO-Separable architecture, with and without augmentation for ablation purposes. In
both settings we achieve state-of-the-art performance.

5.4 DEPTH ESTIMATION

We consider the task of monocular depth estimation from 360◦ photos, tackling the Pano3D bench-
mark (Albanis et al., 2021) for the Matterport3D dataset (Chang et al., 2017). We adopt the same
backbone architecture as for semantic segmentation. Results are presented in Table 4. Pano3D is a
relatively new benchmark; the only previous results are those of Albanis et al. (2021). We achieve
excellent performance with significantly fewer parameters (40× less). While we do not achieve the
best performance across all metrics (which we suspect is due to the alternative model being trained
with a virtual normal loss that leverages surface normal information), we perform better on accuracy
metrics than error metrics and nevertheless achieve the state-of-the-art in six of nine metrics.

6 CONCLUSIONS

We have developed the DISCO (discrete-continuous) group convolution that is simultaneously com-
putationally scalable and equivariant. While our framework can be applied to any compact group,
we specialize to the sphere. We present a sparse tensor implementation with custom gradients that
exhibits excellent rotational equivariance properties, is well-suited to hardware accelerators (e.g.
GPUs, TPUs), and achieves linear scaling in both computational cost and memory usage. We ap-
ply our DISCO spherical CNN framework to numerous dense-prediction tasks, such as semantic
segmentation and depth estimation, achieving state-of-the-art performance on all benchmarks.
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A COMPUTATIONAL COST AND MEMORY USAGE

We compute the computational cost and memory usage of the DISCO spherical convolution, con-
trasting it to the most efficient alternative equivariant spherical convolutional layers of an axisym-
metric convolution computed via Fourier space (Esteves et al., 2018; Cobb et al., 2021). Note that
alternative equivariant spherical convolutional layers that are more expressive are considerably more
costly, both in terms of compute and memory (Cohen et al., 2018; Kondor et al., 2018; Cobb et al.,
2021).

Without loss of generality we consider 1 layer, 1 channel, and a batch size of 1. For the DISCO
spherical convolutional layer we consider axisymmetric filters with 4 nodes and θcutoff = 3π/L. For
the axisymmetric harmonic layer we parameterize the filters with 10 nodes in harmonic space and
use linear interpolation, similar to Esteves et al. (2018).

For the DISCO layer we compute computational cost and memory usage via analytical calculations
of the sparse tensor products and linear interpolation. Here Ψji is first created from which we count
the number of non-zero values. For the axisymmetric harmonic layer we compute computational
cost and memory usage via analytical calculations of the tensor products used in the precompute-
based spherical harmonic transforms, convolutions and linear interpolation.

Results are presented in Fig. 2. For the DISCO spherical convolution both computational costs and
memory usage scales linearly in the number of spherical pixels, i.e. as O(N) = O(L2). Further-
more, not only does the computational cost of the DISCO spherical convolution scale more favorably
than the most efficient alternative equivariant spherical convolution layer but its absolute cost is also
considerably lower. For 4k spherical images we achieve a saving in computational cost of 109 and a
saving in memory usage of 104.

(a) Computational cost (b) Memory usage

Figure 2: Comparison of computational cost and memory usage of the DISCO spherical convolu-
tion and the most efficient alternative equivariant spherical convolution (an axisymmetric harmonic
convolution). The DISCO spherical convolution achieves linear scaling in the number of spherical
pixels, i.e. O(L2), for both computational cost and memory usage.

B CUSTOM SPARSE GRADIENTS

Since automatic differentiation of sparse tensor operations that include learnable parameters, as in
the DISCO convolution, is not supported in either TensorFlow or PyTorch we implement custom
sparse gradients.

Consider the sparse tensor representation of the DISCO convolution

hdj =
∑
i

Ψjifdi, (10)

12



where, for completeness, we also indicate the data instance by index d. Since CNN architectures typ-
ically include many convolutional layers, with outputs of one layer providing the inputs for another,
to compute gradients of the loss function with respect to the parameters of the model it is necessary
to compute the gradient of the convolution with respect to both input and dense filter tensor:

∂hdj
∂fd′i′

= Ψji′δdd′ ;
∂hdj
∂Ψj′i′

= fdi′δjj′ . (11)

Pointwise activation functions σ(·) are typically included in CNN architectures to introduce non-
linearity in an equivariant manner. Gradients can be traced through activation functions by(

∂σ

∂h

∂h

∂f

)
d′i′

=
∑
dj

∂σ

∂hdj

∂hdj
∂fd′i′

=
∑
j

∂σ

∂hd′j
Ψji′ ; (12)

(
∂σ

∂h

∂h

∂Ψ

)
j′i′

=
∑
dj

∂σ

∂hdj

∂hdj
∂Ψj′i′

=
∑
d

∂σ

∂hdj′
fdi′ . (13)

Equation 12 is a sparse-dense tensor multiplication but with the Ψ matrix transposed in input and
output coordinates. Thus, we can use a similar method to Section 4.2 to convert to a compressed
sparse tensor multiplication. Note also that we need only update the non-zero values of Ψji, for
which we know the corresponding indices. Hence, we need only compute Equation 13 for the
sparse set of indices of j′i′.

We validate our implementation of custom sparse gradients presented here against gradients for a
dense tensor computed by automatic differentiation (a highly inefficient approach where the dense
tensor has many entries set to zero), finding agreement to machine precision.

C EQUIVARIANCE TESTS

To test the equivariance of the DISCO spherical convolutions we perform similar equivariance
tests to Cobb et al. (2021, Appendix D) but with rotations restricted to SO(3)/SO(2). To demon-
strate the equivariance of our DISCO layers at high resolution we perform equivariance tests for
L ∈ {128, 256, 512, 1024}. We consider Nf = 20 random spherical signals {fi}Nf

i=1 with harmonic
coefficients sampled from the standard normal distribution andNQ = 20 random rotations {Qj}NQ

j=1

sampled uniformly on SO(3)/SO(2). Note that for axisymmetric filters, this is equivalent to a ran-
dom SO(3) rotation since the first rotation about its axis leaves the filter unchanged. To demonstrate
asymptotic SO(3)/SO(2) equivariance for directional filters (see Section 3.2), we consider rotations
of the form Qj = Z(αj)Y (β) for random αj and constant β ∈ {0◦, 5◦, 10◦}. We measure the
extent to which our DISCO spherical convolution operator D : L2(S2)→ L2(S2) is equivariant by
evaluating the mean relative equivariance error

ε(D(Qf),Q(D(f))) =
1

Nf

1

NQ

Nf∑
i=1

NQ∑
j=1

‖D(Qjfi)−Qj(D(fi))‖
‖D(Qjfi)‖

(14)

resulting from pre-rotation of the signal, followed by application of D, as opposed to post-rotation
after application of D, where the operator norm ‖ · ‖ is defined by the inner product on the sphere
〈·, ·〉L2(S2).

We do not impose filters be bandlimited. As the smoothness of the filter reduces, spherical alias-
ing is increased, and equivariance errors are increased. We therefore consider best and worst cases
to bracket equivariance errors. For the worst case scenario we allow filter parameters to be ran-
dom and consider θcutoff = 5π/L, with 4 nodes along θ and φ. For the best case scenario we use
the same nodes and cutoff but consider smoother filters, with the axisymmetric filter given by the
smooth function ψS(θ) = exp(−θ2cutoff/(θ

2
cutoff − θ2)) at node positions and the directional filter by

ψS(θ) cos(φ). Equivariance errors computed in this manner for the DISCO spherical convolution
are presented in Table 5.

For axisymmetric filters we achieve excellent rotational equivariance. For directional filters, for
which equivariance is asymptotic since we consider SO(3)/SO(2) rotations, we achieve excellent
equivariance in the limit of latitudinal rotation β = 0◦. As β increases, equivariance errors increase
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Table 5: Mean relative equivariance error expressed as a percentage (i.e. 100× ε) for axisymmetric
and directional filters (best and worst cases are shown, where worst is shown in gray inside brackets).

Resolution L Axisymmetric filters Directional filters

β = 0◦ β = 5◦ β = 10◦

128 0.04± 0.01 (0.27± 0.02) 0.03± 0.00 (0.04± 0.04) 0.87± 0.06 (1.03± 0.37) 3.29± 0.12 (3.29± 1.27)
256 0.04± 0.01 (0.33± 0.03) 0.01± 0.00 (0.02± 0.02) 0.83± 0.03 (1.27± 0.90) 3.27± 0.09 (3.85± 1.98)
512 0.04± 0.01 (0.48± 0.03) 0.01± 0.00 (0.01± 0.01) 0.82± 0.01 (1.00± 0.48) 3.24± 0.04 (4.31± 2.09)
1024 0.04± 0.01 (0.55± 0.00) 0.00± 0.00 (0.00± 0.00) 0.82± 0.01 (0.99± 0.67) 3.24± 0.02 (4.37± 2.92)

as expected but, nevertheless, we observe only moderate equivariance error of just a few percent
at β = 10◦ (this compares favorably to the equivariance error of ∼ 35% for a spherical ReLU at
L = 32; Cohen et al. 2018; Cobb et al. 2021).

D ADDITIONAL INFORMATION ON BENCHMARK EXPERIMENTS

D.1 MNIST

Data. We project the MNIST digits onto the sphere at resolution L = 1024, using the same projec-
tion as in Cohen et al. (2018). We also standardize the data by subtracting the mean and dividing by
the standard deviation (both computed from the entire dataset).

Architecture. We consider two models consisting of 7 convolutional layers, one with DISCO spher-
ical convolutions and one with standard planar convolutions for comparison. Convolutional layers
are followed by a global integration over the sphere (Cobb et al., 2021) for the spherical model
and a global pooling for the planar model, which are followed by 2 dense layers, where all layers
include ReLU activations. As typical for CNNs, we continually reduce the resolution of feature
maps and increase the number of channels through the model. The bandlimit and number of chan-
nels (L, channels) considered for each convolutional layer are as follows when progressing through
the model: (1024, 4), (512, 8), (256, 16), (128, 32), (64, 64), (32, 128), (16, 256). For the DISCO
model we consider a hybrid model containing DISCO spherical convolutions for early layers that
operate at high-resolution and harmonic convolutions for subsequent layers operating at resolutions
L ≤ 64. For both the spherical and planar model we adopt depthwise separable convolutions for
channel mixing for layers at resolutions L ≤ 64 and the standard channel treatment otherwise. For
the DISCO spherical convolutions we adopt axisymmetric filters with θcutoff = 3π/L and 4 nodes
along θ, while for the harmonic convolutions we adopt axisymmetric filters parameterized with 10
nodes in harmonic space, similar to Esteves et al. (2018). For the planar model we adopt 3×3 con-
volutional filters. For both models the two proceeding dense layers contain 256 and 10 neurons,
respectively. The resulting DISCO model has 449k learnable parameters, while the planar model
has 411k. The architectures of the spherical and planar models are closely matched; however, since
there are differences in the structure of the spherical and planar layers this results in a slight differ-
ence in number of learnable parameters. In any case, this will not induce any difference in the main
results of Table 1.

Training. We train for 10 epochs usign the ADAM optimizer (Kingma & Ba, 2015), with a learning
rate of 0.001 and a batch size of 8.

D.2 SEMANTIC SEGMENTATION: 2D3DS

Data. The 2D3DS dataset (Armeni et al., 2017) consists of 1413 equirectangular RGB-Depth indoor
360◦ images, with each pixel belonging to one of 14 classes. We downsample the images toL = 256
with bilinear interpolation for the RGB-D images and nearest-neighbor interpolation for the classes.
We standardize the RGB-D data by subtracting the mean and dividing by the standard deviation
channel-wise. We also experiment with image augmentation via random mirroring, i.e. switching
the co-ordinate φ→ −φ, which improves performance a little (see Table 2).

Architecture. We consider a U-Net style architecture with residual blocks as illustrated in Fig-
ure 3. Convolutional layers are typically composed of depthwise-separable DISCO spherical con-
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Figure 3: DISCO spherical convolutional residual U-Net architecture.
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Figure 4: Example predictions for semantic segmentation of 2D3DS data.

volutions. Downsampling layers are DISCO spherical convolutions but with outputs at half the
resolution, i.e. L/2. For upsampling layers we use transposed DISCO spherical convolutions sam-
pled at double the resolution, i.e. 2L. We use spherical batch-normalizations and consider similar
residual blocks to Jiang et al. (2019). Note in the final layer we consider 14 channels to represent
the different classes and also consider 1 invalid channel. We consider models with axisymmet-
ric (DISCO-Axisymmetric), directional-separable (DISCO-Separable) or unconstrained directional
(DISCO-Directional) filters for all convolution layers. For axisymmetric filters we set θcutoff = 3π/L
and 4 nodes along θ for L > 64, else we use standard harmonic convolutions with 10 nodes in har-
monic space, similar to Esteves et al. (2018). For separable filters we set θcutoff = 3π/L and 4 nodes
along θ and φ. Finally, we also use unconstrained filters where the nodes are a square 3×3 pixel grid
projected onto the sphere. The projection is such that the central node is on the pole at θ = 0 and
the edge nodes are at θ = π

L , φ ∈ {0,±π2 , π} and θ =
√
2π
L , φ ∈ {±π4 ,± 3π

4 }. We use bilinear inter-
polation on this regular grid to obtain values outside the nodes. For the DISCO-Directional model
we also consider the case with the mirror augmentation discussed above (DISCO-Directional-Aug).
The models DISCO-Axisymmetric, DISCO-Separable and DISCO-Directional have 1.78M, 1.47M
and 1.68M learnable parameters respectively.
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Figure 5: Example predictions for semantic segmentation of Omni-SYNTHIA data.

Training. We train for 120 epochs using the ADAM optimizer (Kingma & Ba, 2015) with a batch
size of 8 and learning rate of 0.01 which is reduced on plateau by 0.1 with patience 8. We use a
class-wise weighted cross-entropy loss to balance the class examples. We also weight the loss and
metrics by the area of each pixel on the sphere. We use the same 3-fold split for cross-validation as
in Jiang et al. (2019). Example segmentation results are shown in Figure 4.

D.3 SEMANTIC SEGMENTATION: OMNI-SYNTHIA

Data. The Omni-SYNTHIA dataset (Ros et al., 2016) consists of 2269 panoramic RGB images of
outdoor city sceneries with each pixel belonging to one of 13 classes. We downsample the images to
L = 256 with bilinear interpolation for the RGB images and nearest-neighbour for the classes. We
also experiment with copy-and-paste augmentation (Ghiasi et al., 2021), which is straightforward
to implement for our sampling scheme and improves performance a little (see Table 3). This is
implemented by choosing a random training image, then choosing a random small object out of
pole, traffic sign, pedestrian, or bike and pasting this object on a different training image for both
RGB and segmented values. The pasted objects are also translated randomly by φ → nπ/L which
can be performed straightforwardly for our sampling scheme; we also do a random mirroring of the
pasted object.

Architecture. We consider the same backbone of a DISCO spherical convolutional residual U-Net
architecture as for the 2D3DS data (as in Figure 3) but with 13 output channels (+1 channel for in-
valid) and 3 channels for the input. Here we consider only separable directional filters parameterized
identically as for 2D3DS (DISCO-Separable). We also consider the case with the copy-and-paste
augmentation discussed above (DISCO-Separable-Aug). The resulting model has 1.47M learnable
parameters.

Training. We train for 70 epochs using the ADAM optimizer Kingma & Ba (2015) with a batch
size of 8 and learning rate of 0.01, which is reduced on plateau by 0.1 with patience 8. We use a
class-wise weighted cross-entropy loss to balance the class examples. We also weight the loss and
metrics by the area of each pixel on the sphere. We use the same training/test split as in Zhang et al.
(2019). Example segmentation results are shown in Figure 5.

D.4 DEPTH ESTIMATION: PANO3D ON MATTERPORT3D

Data. The Matterport3D dataset (Chang et al., 2017) contains 7907 spherical RGB images from
which we predict spherical depth maps. We downsample the RGB-Depth images to L = 512 with
bilinear interpolation.

Architecture. We consider the same backbone of a DISCO spherical convolutional residual U-Net
architecture as for the semantic segmentation problem but adapted for depth estimation. The archi-
tecture is similar to Figure 3 but we replace each ResBlocks simply by a DISCO spherical convolu-
tion. All resolutions are doubled to start at resolution L = 512 for the input. We consider 3 input
channels and 1 output channel (depth). The number of channels for the down leg of the model are
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Figure 6: Example predictions for depth estimation of Pano3D data (depth plotted in meters).

(64, 64, 128, 256, 512), which is reversed for the up leg. For the upsampling layers we increase the
bandlimit by 2 using nearest neighbor interpolation. We adopt this upsampling rather than trans-
posed convolutions to simplify transfer learning (discussed below) from planar to spherical convo-
lutions. Due to the higher resolution we use smaller batch sizes, which means batch-normalization is
unsuitable and so we therefore use group-normalization (Wu & He, 2018) with 16 groups. Here we
apply a group-normalization and ReLU after every DISCO spherical convolution. We consider only
unconstrained directional filters (DISCO-Directional), adopting the same parameterization as for the
segmentation problems, as described above. The resulting model has 658k learnable parameters.

Training. We use an area weighted `1 loss and the same area weighted metrics as in Albanis et al.
(2021). We use the same train/test/validation split as in Albanis et al. (2021). For faster training
we use transfer learning by first training the above architecture with planar convolution layers with
3 × 3 filters, for 60 epochs using the ADAM optimizer (Kingma & Ba, 2015), with a batch size
of 2 and learning rate of 0.0001. The 3 × 3 filter weights are then easily transferred to the filters
projected on the sphere for the unconstrained directional DISCO filters. After the weight transfer,
the DISCO model is then trained for a further 60 epochs with the same hyperparameters. Example
depth estimation results are shown in Figure 6.
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