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Bayesian variational regularization on the ball
Matthew A. Price and Jason D. McEwen

Abstract—We develop variational regularization methods
which leverage sparsity-promoting priors to solve severely ill-
posed inverse problems defined on the 3D ball (i.e. the solid
sphere). Our method solves the problem natively on the ball
and thus does not suffer from discontinuities that plague al-
ternate approaches where each spherical shell is considered
independently. Additionally, we leverage advances in probability
density theory to produce Bayesian variational methods which
benefit from the computational efficiency of advanced convex
optimization algorithms, whilst supporting principled uncertainty
quantification. We showcase these variational regularization and
uncertainty quantification techniques on an illustrative example.
The C++ code discussed throughout is provided under a GNU
general public license.

Index Terms—harmonic analysis, image processing, probabilis-
tic technique, radial basis function, wavelet transform

I. INTRODUCTION

INVERSE problems on Euclidean manifolds have been
researched extensively and associated techniques have

found effective application in countless domains. However,
increasingly often one wishes to consider inverse problems
defined on curved, non-Euclidean manifolds, e.g. diffusion
magnetic resonance imaging (MRI) [1] and 2D dark matter
reconstructions on the sphere, and many aspects of geophysics
[2], [3], [4], astrophysics [5], [6], and molecular modeling
[7] on the 3D ball, for which very few techniques have been
developed.

Inverse problems are often solved by Bayesian Markov
chain Monte Carlo (MCMC) sampling methods or variational
approaches (optimization etc.). MCMC methods are highly
computationally demanding on the ball, due to the compu-
tational complexity of transforms on curved manifolds, and
are infeasible for many applications. Variational methods,
which solve inverse problems through classical optimization
techniques, are typically scalable and robust, supporting both
theoretical guarantees, and can support principled uncertainty
quantification (as demonstrated in this letter). Such techniques
are thus perfectly suited to scientific analysis on the ball, where
computational efficiency and probabilistic interpretations are
highly desirable. Variational methods have been considered
over the sphere [8], [9], [10], often leveraging ideas from com-
pressed sensing [11], [12], and typically promoting sparsity in
spherical wavelet dictionaries, e.g. [13], [14], [15], to recover
state-of-the-art results. Spherical techniques have been used
tomographically (as concentric spherical shells) to model ra-
dially distributed datasets, however holistic approaches, which
perform analysis natively on the underlying manifold (the
ball), are crucially missing. Wavelet transforms on the 3D ball
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have been developed to support radially distributed problems
[16], [17], [18], [19], [20], [21], however these dictionaries
have, to our best knowledge, not been leveraged to perform
variational inference on the ball.

In this letter we develop scalable techniques, with associated
open-source software, which leverage variational regulariza-
tion methods to solve ill-posed and/or ill-conditioned inverse
problems natively on the ball. Furthermore, leveraging recent
developments in the theory of probability density theory
[22], we demonstrate how convex variational regularization
techniques can be combined with advances in probability
density theory to construct computationally efficient signal re-
construction techniques on the ball with principled uncertainty
quantification, or ‘Bayesian variational regularization’.

II. BAYESIAN VARIATIONAL REGULARIZATION ON BALL

In this section we develop mathematical techniques for the
analysis of spin signals on the 3D ball and wavelets on the di-
rectional ball, scalable convex optimization algorithms on the
ball, and variational regularization techniques which support
principled Bayesian uncertainty quantification. Throughout we
adopt separable eigenfunctions on the ball, with radial basis
functions given by the Laguerre polynomials [23], [24] and
angular basis functions given by the spin spherical harmonics
sY`m [25], [26], [27], [28]. As spin spherical harmonic trans-
form are more common in the associated literature, we will
focus primarily on the novel radial components [21], and the
Bayesian interpretation [22], [29], [30], [31].

A. Spin signals on the ball
Here we discuss the construction of Spherical-Laguerre

basis functions on the 3D ball, developed in previous work
[21] and adopted throughout this letter. First let us define the
Laguerre basis functions along the radial half-line Kp(r) as

Kp(r) ≡

√
p!

(p+ 2)!

e
−r
2τ

√
τ3
L(2)
p (

r

τ
), (1)

where L
(2)
p is the pth-associated 2nd-order Laguerre polyno-

mial [23], [24], and τ ∈ R+ is a scale factor that adds a
scaling flexibility. These basis functions are orthonormal on
R+, i.e. 〈Kp|Kq〉R+ = δpq , and complete, by Gram-Schmidt
orthogonalization and exploiting polynomial completeness
on L2(R+, r2e−r dr) [21]. Any square-integrable function
f ∈ L2(R+) can be projected into this basis as

fp = 〈f |Kp〉 =

∫
R+

drr2f(r)Kp(r), (2)

which supports exact synthesis by

f(r) =

∞∑
p=0

fpKp(r). (3)
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Real-world functions are typically to a good approximation
bandlimited, i.e. the Fourier-Laguerre coefficients of signals
f ∈ R+ are such that fp = 0,∀p ≥ P , and so this summation
is truncated at P . We adopt the Gauss-Laguerre quadrature
(see e.g. [32]), which is commonly used to numerically evalu-
ate integrals over the radial half-line, and was used to develop
an exact sampling theorem on Spherical-Laguerre space [21].

Suppose we adopt these radial basis functions which
we then combine with the spin-s spherical harmonic an-
gular basis functions sY`m(ω) [25], [26] for s ∈ Z and
ω = (θ, ψ) ∈ S2, where θ = [0, π) is the colatitude and
ψ ∈ [0, 2π) is the longitude. In such a case, we can
straightforwardly define the Spherical-Laguerre basis functions
sZ`mp(r) = Kp(r)sY`m(ω) for r = (r, ω) ∈ B3 := R+ × S2,
which are orthogonal 〈sZ`mp|sZ`′m′p′〉B3 = δ``′δmm′δpp′ and
onto which any square integrable spin-s function on the ball
sf ∈ L2(B3) can be projected by

sf`mp = 〈sf |sZ`mp〉B3 =

∫
B3

dµ(r)sf(r)sZ
∗
`mp(r), (4)

where dµ(r) = d3r = r2 sin θ dr dθ dψ is the rotation invari-
ant measure (Haar measure) on the ball. By considering the
separability and completeness of angular and radial basis
functions this projection supports exact synthesis, such that

sf(r) =

P−1∑
p=0

L−1∑
`=0

∑̀
m=−`

sf`mpsZ`mp(r), (5)

where L,P ∈ Z+ are the angular [27] and radial [21]
bandlimits respectively. In this work, by considering the re-
lations presented in this subsection, fast adjoint Spherical-
Laguerre transforms were constructed, facilitating variational
regularization on the ball (see Section III).

B. Directional scale-discretized wavelets on the ball

Here we extend the Spherical-Laguerre wavelets on the
3D ball developed in previous work [21] to 4D directional
scale-discretized wavelets on the ball. Furthermore, we ex-
tend the discussion to include spin-signals, which arise in
various areas of physics e.g. quantum mechanics and weak
gravitational lensing [31]. Consider the radial translation op-
erator τ r for r ∈ R+ (see [21], [33] for further details),
and rotation Rρ, for Euler angles ρ = (α, β, γ) ∈ SO(3)
with α ∈ [0, 2π), β ∈ [0, π), and γ ∈ [0, 2π), with action
(Rρsf)(ω) ≡ e−isθsf(R−1

ρ ω). Further define the concate-
nation of these transforms to be the 4D transformation
Lh = τ rRρ for h = (r, ρ) ∈ H4 := R+ × SO(3). Leverag-
ing this composite transformation one can straightforwardly
define the directional wavelet coefficients W sΨ

jj′ ∈ L2(H4)
of any square integrable spin-s function sf ∈ L2[B3] by the
directional convolution ~

W sΨ
jj′

(h) ≡ (sf ~ sΨ
jj′)(h) ≡ 〈sf,LhsΨ

jj′〉B3

=

∫
B3

dµ(r)sf(r)(LhsΨ
jj′)?(r), (6)

where sΨ
jj′ ∈ L2[B3] is the wavelet kernel at angular and

radial scales j, j′ ∈ Z+ respectively. These scales determine

the volume over which a given wavelet function has compact
support [21]. Typically, wavelet coefficients do not capture
low frequency signal content, which instead is captured by
axisymmetric scaling functions sΥ ∈ L2(B3) with coefficients
W sΥ ∈ L2(B3) defined by the axisymmetric convolution �
with a spin-s signal sf ∈ L2(B3) such that

W sΥ(r) ≡ (sf � sΥ)(r) ≡ 〈sf,LrsΥ〉B3

=

∫
B3

dµ(r′)sf(r′)(LrsΥ)?(r′) , (7)

where Lr is an axisymmetric simplification of the full 4D
transformation Lh. For suitable choices of wavelet and scaling
generating functions (those which satisfy wavelet admissibil-
ity) these projections support exact synthesis by

sf(r) =

∫
B3

dµ(r′)W sΥ(r′)(Lr′sΥ)(r)

+

J∑
j=J0

J′∑
j′=J′0

∫
H4

dµ(h)W sΨ
jj′

(h)(LhsΨ
jj′)(r), (8)

where dµ(h) = d4h = r2 sinβ dr dα dβ dγ is the Haar
measure on H4. By construction [21] this wavelet dictionary
exhibits both good frequency and spatial localization, permits
exact synthesis, and leverages optimal sampling theories for ef-
ficient transforms. Furthermore, by adopting adjoint Spherical-
Laguerre transforms (see subsection II-A) fast adjoint 4D
wavelet transforms on the ball were constructed.

C. Efficient transformations on the ball

Variational methods on the ball require an additional level
of complexity over those defined on the spherical manifolds,
which are already significantly computationally expensive. The
forward and inverse Spherical-Laguerre transforms are com-
puted through the FLAG1 package [21] with computational
complexity ∼ O(L4), built on spin spherical harmonic trans-
forms provided by the SSHT2 package [27], [8]. Similarly,
forward and inverse wavelets transforms on the 3D ball are
computed through the FLAGLET3 package [21] with compu-
tational complexity ∼ O(NL4), where N ∈ Z+ is the wavelet
directionality, built on the wavelet transforms provided by the
S2LET4 package [34], [14], [28], [15], [13], [35]. Both these
transforms on the ball (FLAG and FLAGLET) scale at least
quartically with bandlimit. Therefore, even optimally sampled
transforms on the ball are very computationally expensive,
motivating attention to scalable implementations.

D. Bayesian variational regularization on the ball

Consider measurements y ∈ RM , e.g. observations on the
sky with some radial component, which may be related to
some intrinsic underlying field of interest on the ball x ∈ RNB3

by a sensing operator Φ ∈ RM×NB3 : x 7→ y. Further suppose
measurements are polluted with noise n, then our measure-
ment model is generally given by y = Φx+n, which is both

1https://astro-informatics.github.io/flag/
2https://astro-informatics.github.io/ssht/
3http://astro-informatics.github.io/flaglet/
4https://astro-informatics.github.io/s2let/

https://astro-informatics.github.io/flag/
https://astro-informatics.github.io/ssht/
http://astro-informatics.github.io/flaglet/
https://astro-informatics.github.io/s2let/
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classically ill-posed in the sense of Hadamard [36] and may be
seriously ill-conditioned. There are many methods for inferring
x from y, in this work we will consider a Bayesian variational
approach, so as to benefit from the computational efficiency
of variational methods (a key component on the ball) whilst
retaining the principled statistical interpretation provided by
Bayesian methods.

In a Bayesian sense, given a sufficient understanding of
our physical system (including e.g. the forward model and
the noise distribution etc.) we can assign a likelihood distri-
bution P (y|x; Φ), which acts as a data-fidelity constraint on
our solutions. Furthermore, suppose we have some a priori
knowledge as to the nature of our latent variable, e.g. x is
presumed to be sparse in a given dictionary, then we can
straightforwardly define a Bayesian prior distribution P (x),
which acts as a regularization functional to stabilize our
inference. With these distributions defined we can construct
our posterior distribution through Bayes’ theorem

P (x|y; Φ) ∝ P (y|x; Φ)P (x), (9)

where we drop the normalization term (Bayesian evidence)
as it does not affect our solution, and for simplicity. A
reasonable choice of solution, in a Bayesian sense, is that
which maximizes the posterior odds (i.e. the most likely one),
called the maximum a posteriori (MAP) solution, given by

xMAP ≡ argmax
x

{
P (x|y; Φ)

}
,

∝ argmin
x

{
− log( P (y|x; Φ)P (x) )

}
,

∝ argmin
x

{
h(x) = f(x) + g(x)

}
, (10)

where the second line comes from the monotonicity of the
logarithm function. The final line highlights that MAP esti-
mation, for the common class of log-concave distributions,
yields convex objectives h(x), and this is equivalent to un-
constrained convex optimization. Such optimization problems
typically leverage 1st-order information to efficiently converge
to global (from convexity) extremal solutions [37]. For convex
but non-differentiable objectives (e.g. sparsity priors) gradi-
ent information is accessed through the proximal projection
[38], and thus extremal solutions are efficiently recovered via
proximal optimization algorithms [39], [37]. Such algorithms
permit strong guarantees of both convergence and rate of
convergence, however they still only recover point estimates
and do not naively support uncertainty quantification.

E. Uncertainty quantification of MAP estimation

Bayesian methods often consider credible regions (regions
of high probability concentration) Cα ⊂ CNB3 of the full pos-
terior distribution, at 100(1− α)% confidence, by evaluating

P (x ∈ Cα|y; Φ) =

∫
x∈RNB3

P (x|y; Φ)ICαdx = 1−α, (11)

which is computationally intractable in high dimensional set-
tings, such as data on the ball, even for moderate resolutions.
In our method we adopt a recently derived conservative
approximation (which is valid for all log-concave posteriors

or convex objectives) to the highest posterior density (HPD)
credible set C ′α ⊇ Cα [22] defined by

C ′α ⊂ CNB3 :=
{
x : h(x) ≤ ε′α

}
,

ε′α = h(xMAP)+
√

16N log(3/α) +N, (12)

which allows one to approximate Cα with knowledge only
of the MAP solution xMAP and the dimension NB3 . This
is a crucial realization for variational methods on complex
manifolds (such as the ball), as the necessity for scalable, com-
putationally efficient approaches is paramount. Furthermore,
the approximation error is bounded above [22] thus affording
sensitivity guarantees (i.e. ε′α cannot become arbitrarily larger
than εα). The error in this approximation has been assessed
in a variety of application domains [29], [40] and has been
benchmarked against proximal MCMC methods [41].

A number of uncertainty quantification techniques have
recently been developed which are built around this approxi-
mation, in a variety of settings, many of which exploit linearity
[10] to facilitate extremely rapid computation. In this letter
we consider, for the first time on the ball, perhaps the most
straightforward uncertainty quantification technique, Bayesian
hypothesis testing [29], [30], [42]. Bayesian hypothesis testing
is conducted as follows. A feature of xMAP is adjusted to
construct a surrogate solution xSUR from which it is deter-
mined if this solution belongs to the credible set at confidence
100(1−α)%. If xSUR does not belong to C ′α then it necessarily
does not belong to Cα (from the conservative nature of the
approximation in Equation 12) and therefore the feature is
statistically significant at 100(1−α)% confidence. Conversely,
if xSUR ∈ C ′α then the statistical significance of the feature of
interest is indeterminate. In this letter we consider features
Ω ⊂ xMAP to be local sub-structure and thus hypothesis tests
in this case relate to the physicality of local structure, i.e.
whether these structures are aberrations or physical signals.

One can straightforwardly leverage Bayesian hypothesis
testing to constrain the maximum and minimum intensities
a parition of xMAP can take, such that the resulting surrogate
xSUR saturates the approximate level-set threshold ε′α. In this
sense one can recover local voxel level Bayesian error bars
coined local credible intervals [29], [30], [42], [10]. The con-
cept of Bayesian hypothesis testing can further be leveraged
to consider hypothesis tests which quantify the uncertainty in
e.g. feature location [43] and global features [31].

III. NUMERICAL EXPERIMENT

In this section we consider a noisy inpainting directional
deconvolution inverse problem, which is (seriously) ill-posed
and ill-conditioned. Such an example is representative of
a diverse set of practical applications. Consider again the
problem setup outlined in Section II-D, where we model the
acquisition of observations by the sensing operator

Φ = MB−1KB and Φ† = B†KB−†M†, (13)

where B and B−1 represent forward and inverse spin-0
Spherical-Laguerre transforms (see Section II-A), K is multi-
plication with a skewed Gaussian kernel in Spherical-Laguerre
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xTRUE xDIR

SNR = −2.707 dB

xMAP

SNR = 10.293 dB

xSUR

Bayesian Hypothesis Test

Ω

Fig. 1. Description: Variational inference results for 3D directional decon-
volution with inpainting using pseudo-Gaussian simulations for L = P = 32
(upsampled to 128), roughly approximating physical fields e.g. atmospheric
fields – these methods trivially extend to realistic simulations. Specifically
the ground truth is smoothed with a directional kernel, 50% of observations
are masked, and the remaining observations are corrupted with 30dB i.i.d.
Gaussian noise n ∼ N (0, σ2). Panels: Input ground truth (top left), naive
inversion (baseline, top right), maximum a posteriori (MAP) estimator using
ball wavelet `1 sparsity (bottom left), and Bayesian hypothesis test of local
structure Ω (bottom right, see Section II-E). Discussion: Notice that naive
direct inversion recovers a poor estimator (SNR = −2.707dB). Alternatively,
treating the problem as a Bayesian variational problem not only recovers
a very good estimate (SNR = 10.293dB), but also supports principled
uncertainty quantification. The Bayesian hypothesis test of local substructure
Ω in the bottom right subfigure correctly determines the physicality of
this feature at 99%-confidence. The MAP estimate and uncertainties were
recovered in ∼ 2 minutes of non-dedicated compute on a MacBook Air 2016
respectively, which can trivially sped up through e.g. OpenMP and MPI.

space (which is trivially self-adjoint), M represents masking,
and † denotes the operator adjoint. It is important to note that
B−1 6= B† which is a poorly motivated approximation often
adopted in settings involving spherical harmonic transforms.
Additionally, we define as a baseline the naive direct inversion
xDIR = Φ−1y for Φ−1 = B−1K−1BM†, where K−1 is simply
division by the Spherical-Laguerre space convolutional kernel.
As we are considering ill-posed inverse problems [36] the
naive inverse xDIR can give (potentially non-physical) solu-
tions which lie far from the true signal. Moreover, the noise
contribution, which is typically highly oscillatory, may (and
often does) dominate the solution.

We consider the case in which n is independent and
identically distributed noise drawn from a univariate Gaussian
distribution n ∼ N (0, σ2). Our likelihood function is thus
given by a Gaussian distribution with zero mean and variance
σ2. Suppose our prior knowledge indicates that x is likely to
be sparsely distributed when projected into the ball wavelet
dictionary Ψ, described in Section II-B. A prior distribution
which naturally promotes sparsity is the Laplacian distribution,
which one might adopt, such that the posterior is given by

P (x|y; Φ) ∝ exp

(
−B3‖Φx− y‖22

2σ2

)
exp

(
− λΨ‖Ψ†x‖1

)
,

(14)
where B3‖·‖ and Ψ‖·‖ are the standard `p-norms weighted by
pixel-size so as to better approximate the continuous `p-norms

on the ball. By following the logic presented in Section II-D
one finds the MAP estimate is given by

xMAP = argmin
x∈RNB3

{
B3‖Φx− y‖22

2σ2
+ λΨ‖Ψ†x‖1

}
, (15)

with regularization parameter λ ∈ R+ which we marginalize
over [44], to maintain a principled Bayesian interpretation.

A. Experiment details
We generate a ground truth signal xTRUE by smoothing a

random signal on the ball, effectively generating a pseudo-
Gaussian random field, which is bandlimited at L in the
angular domain and P = L along the radial line. This ground
truth is mapped by Φ to simulated observations which are
subsequently polluted with i.i.d. noise, drawn from a univariate
Gaussian distribution, to form simulated observations y, such
that the input signal to noise ratio,

SNR = 20× log10

(
‖ΦxTRUE‖2
‖ΦxTRUE − y‖2

)
, (16)

is 30dB. An analogous SNR definition is used to quantify
the reconstruction fidelity between x and a recovered solution
x∗. Both the naive inversion (SNR= −2.707dB), and MAP
(SNR= 10.293dB) estimators are recovered, and are presented
in Figure 1. Note that the variational solution is recovered
in the analysis unconstrained setting through the proximal
forward-backward algorithm [45], [37]. This dramatic im-
provement in reconstruction fidelity is compounded by the
fact that our estimator also supports principled Bayesian un-
certainty quantification, namely hypothesis testing of structure
e.g. the diffuse, high intensity region Ω highlighted in Figure
1 was correctly determined to be physical at 99% confidence.

IV. DISCUSSION & CONCLUSIONS

Whilst there are many methods which consider reconstruc-
tion over the 3D ball by analyzing individual concatenated
spherical shells, to the best of our knowledge, this is the
first article which develops variational regularization meth-
ods natively on the ball. Leveraging recent developments in
probability concentration theory, we demonstrate how MAP
estimation (unconstrained optimization) permits principled un-
certainty quantification. Our Bayesian variational approach
benefits from the computational efficiency of convex optimiza-
tion whilst facilitating principled uncertainty quantification.
We demonstrate that our variational approach is effective at
solving seriously ill-posed and ill-conditioned inverse prob-
lems on the ball, recovering very accurate, robust estimates
of the underlying ground truth. In future collaborative work
we will apply these methods to more realistic simulations and
observational data, for a variety of application domains. As
a bi-product of this work an open-source, flexible, scalable
object oriented C++ software, B3INV5 was created which is
constructed on the convex optimization package SOPT6 [46],
[47], [48], [49]. Additionally, fast adjoint operators which
were written and collected into the FLAG and FLAGLET
codebases.

5https://github.com/astro-informatics/b3inv
6http://astro-informatics.github.io/sopt/

https://github.com/astro-informatics/b3inv
http://astro-informatics.github.io/sopt/


IEEE SIGNAL PROCESSING LETTERS, SUBMITTED 5

REFERENCES

[1] D. S. Tuch, “Q-ball imaging,” Magnetic Resonance in Medicine: An
Official Journal of the International Society for Magnetic Resonance in
Medicine, vol. 52, no. 6, pp. 1358–1372, 2004.

[2] F. J. Simons et al., “Solving or resolving global tomographic models
with spherical wavelets, and the scale and sparsity of seismic hetero-
geneity,” Geophysical Journal International, vol. 187, no. 2, pp. 969–
988, Nov. 2011.

[3] A. Marignier, A. M. G. Ferreira, and T. Kitching, “The probability
of mantle plumes in global tomographic models,” Geochemistry, Geo-
physics, Geosystems, vol. 21, no. 9, p. e2020GC009276, 2020.

[4] E. Kendall, A. Ferreira, S.-J. Chang, M. Witek, and D. Peter, “Con-
straints on the upper mantle structure beneath the pacific from 3-d
anisotropic waveform modelling,” Journal of Geophysical Research:
Solid Earth.

[5] A. Heavens, “3D weak lensing,” MNRAS, vol. 343, no. 4, pp. 1327–
1334, 08 2003.

[6] B. Leistedt, J. D. McEwen, T. D. Kitching, and H. V. Peiris, “3D weak
lensing with spin wavelets on the ball,” Physical Review D, vol. 92,
no. 12, p. 123010, Dec. 2015.

[7] W. Boomsma and J. Frellsen, “Spherical convolutions and their ap-
plication in molecular modelling.” in Advances in Neural Information
Processing Systems, vol. 2, 2017, p. 6.

[8] J. D. McEwen, G. Puy, J. Thiran, P. Vandergheynst, D. Van De Ville,
and Y. Wiaux, “Sparse image reconstruction on the sphere: Implications
of a new sampling theorem,” IEEE Transactions on Image Processing,
vol. 22, no. 6, pp. 2275–2285, 2013.

[9] C. G. R. Wallis, Y. Wiaux, and J. D. McEwen, “Sparse Image Recon-
struction on the Sphere: Analysis and Synthesis,” IEEE Transactions on
Image Processing, vol. 26, pp. 5176–5187, Nov. 2017.

[10] M. A. Price, L. Pratley, and J. D. McEwen, “Sparse image reconstruction
on the sphere: a general approach with uncertainty quantification,” sub-
mitted to IEEE Transactions on Image Processing, p. arXiv:2105.04935,
5 2021.

[11] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information
theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[12] E. J. Candès et al., “Compressive sampling,” 2006.
[13] J. Y. H. Chan, B. Leistedt, T. D. Kitching, and J. D. McEwen, “Second-

generation curvelets on the sphere,” IEEE Transactions on Signal
Processing, vol. 65, no. 1, pp. 5–14, 2017.

[14] Leistedt, B., McEwen, J. D., Vandergheynst, P., and Wiaux, Y., “S2let:
A code to perform fast wavelet analysis on the sphere,” A&A, vol. 558,
p. A128, 2013.

[15] J. D. McEwen and M. A. Price, “Scale-discretised ridgelet transform
on the sphere,” in 2019 27th European Signal Processing Conference
(EUSIPCO), 2019, pp. 1–5.

[16] V. Michel, “Wavelets on the 3 dimensional ball,” PAMM, vol. 5, no. 1,
pp. 775–776, 2005.

[17] M. Fengler, D. Michel, and V. Michel, ZAMM - Journal of Applied
Mathematics and Mechanics, vol. 86, no. 11, pp. 856–873, 2006.

[18] F. Lanusse, A. Rassat, and J. L. Starck, “Spherical 3D isotropic
wavelets,” Journal of Astronomy & Astrophysics, vol. 540, p. A92, Apr.
2012.

[19] C. Durastanti, Y. Fantaye, F. Hansen, D. Marinucci, and I. Z. Pesenson,
“Simple proposal for radial 3d needlets,” Phys. Rev. D, vol. 90, p.
103532, Nov 2014.

[20] Z. Khalid, R. A. Kennedy, and J. D. McEwen, “Slepian spatial-spectral
concentration on the ball,” Applied and Computational Harmonic Anal-
ysis, vol. 40, no. 3, pp. 470–504, 2016.

[21] B. Leistedt and J. D. McEwen, “Exact Wavelets on the Ball,” IEEE
Transactions on Signal Processing, vol. 60, no. 12, pp. 6257–6269, Dec.
2012.

[22] M. Pereyra, “Maximum-a-posteriori estimation with bayesian confidence
regions,” SIAM Journal on Imaging Sciences, vol. 10, no. 1, pp. 285–
302, 2017.

[23] H. Pollard, “Representation of an analytic function by a laguerre series,”
Annals of Mathematics, vol. 48, no. 2, pp. 358–365, 1947.

[24] E. J. Weniger, “On the analyticity of Laguerre series,” Journal of Physics
A Mathematical General, vol. 41, no. 42, p. 425207, Oct. 2008.

[25] E. T. Newman and R. Penrose, “Note on the bondi-metzner-sachs group,”
Journal of Mathematical Physics, vol. 7, no. 5, pp. 863–870, 1966.

[26] J. N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich, and
E. C. G. Sudarshan, “Spin-s spherical harmonics,” Journal of Mathe-
matical Physics, vol. 8, no. 11, pp. 2155–2161, 1967.

[27] J. D. McEwen and Y. Wiaux, “A Novel Sampling Theorem on the
Sphere,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp.
5876–5887, Dec. 2011.

[28] J. D. McEwen, B. Leistedt, M. Büttner, H. V. Peiris, and
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